Ewing Sarcoma: Current Management and Future Approaches Through Collaboration

ABSTRACT

Ewing sarcoma (ES) is an aggressive sarcoma of bone and soft tissue occurring at any age with a peak incidence in adolescents and young adults. The treatment of ES relies on a multidisciplinary approach, coupling risk-adapted intensive neoadjuvant and adjuvant chemotherapies with surgery and/or radiotherapy for control of the primary site and possible metastatic disease. The optimization of ES multimodality therapeutic strategies has resulted from the efforts of several national and international groups in Europe and North America and from cooperation between pediatric and medical oncologists. Successive first-line trials addressed the efficacy of various cyclic combinations of drugs incorporating doxorubicin, vincristine, cyclophosphamide, ifosfamide, etoposide, and dacarbazine and identified prognostic factors now used to tailor therapies. The role of high-dose chemotherapy is still debated. Current 5-year overall survival for patients with localized disease is 65% to 75%. Patients with metastases have a 5-year overall survival < 30%, except for those with isolated pulmonary metastasis (approximately 50%). Patients with recurrence have a dismal prognosis. The many insights into the biology of the EWS-FLI1 protein in the initiation and progression of ES remain to be translated into novel therapeutic strategies. Current options and future approaches will be discussed.

INTRODUCTION

Ewing sarcoma (ES) is an aggressive sarcoma of bone and/or soft tissue with a peak incidence during adolescence and young adulthood. In this rare disease, treatment advances since the 1970s have largely resulted from clinical trials conducted by national and international cooperative groups. Over the years, these trials have answered key chemotherapy questions and better defined risk groups, allowing tailored treatment strategies. Collaboration between pediatric and medical oncologists in ES has been a model for cancer management in adolescents and young adults. Cooperation among surgeons, pathologists, radiation oncologists, and medical and pediatric oncologists, as well as advances in diagnostic imaging, surgery, and radiotherapy technologies, has improved local disease control.

The treatment of ES relies on a multidisciplinary approach that couples risk-adapted chemotherapy and local therapy (surgery, radiation therapy, or both) to maximize the chance of cure and minimize the risk of long-term sequelae. However, although overall survival (OS) for patients with localized disease now approaches 65% to 75% (Fig 1), acute and long-term toxicities of therapy are substantial. Efforts should be pursued to better tailor therapy and especially to improve outcome for patients with metastatic and recurrent ES (Table 1).

The mutual interest of researchers and clinicians advanced the understanding of ES oncogenesis and genetic susceptibility for developing ES. Since the discovery and characterization of the causal translocation involving the EWS gene on chromosome 22 and an ETS-type gene, researchers have evaluated genes modulated by the chimeric fusion oncogene EWS-FLI1 (and similar fusion genes) that could serve as therapeutic targets. Indeed, although targeting EWS-FLI1 directly reverses the malignant phenotype, this finding has not been translated into clinical practice.

This progress resulted from collaboration among clinicians, pathologists, and biologists at national and international levels (eg, EICESS92, European Intergroup Cooperative Ewing’s Sarcoma Study 92) and EE99, the European Intergroup 99 studies) to build virtual (European Network of Excellence EuroBoNet) and centralized (Children’s...
PROGNOSTIC FACTORS

Successive analyses performed by national and international collaborative studies have allowed refinement of prognostic groups and the development of risk-tailored treatment strategies. Metastatic status at diagnosis is the strongest prognostic factor across different treatment strategies, even with more sensitive imaging modalities. Five-year overall survival (OS) remains <30% for patients with initially metastatic disease. However, those with isolated pulmonary metastasis have a better clinical outcome than those with metastases at other sites (3-year event-free survival [EFS], 29% to 52%).

Study Design and Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Observed Results</th>
<th>Ref</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>US intergroup IESSI 1972–78 (n = 342)</td>
<td>VAC+ Dox</td>
<td>65%</td>
<td>VDC + IE better than VACA for localized ES</td>
</tr>
<tr>
<td>Localized ES</td>
<td>High-dose intermittent CT (every 3 weeks)</td>
<td>56%</td>
<td>No difference for metastatic ES</td>
</tr>
<tr>
<td>US intergroup IESSI 1978–82 (n = 214)</td>
<td>VAC+ Dox</td>
<td>69%</td>
<td>VDC + IE better than VACA for localized ES</td>
</tr>
<tr>
<td>Nonpelvic localized ES</td>
<td>Moderate-dose continuous CT (every 3 weeks)</td>
<td>22%</td>
<td>Dose escalation of alkylating agents did not improve the prognosis of localized ES</td>
</tr>
<tr>
<td>US POG CCSG INT-0091 1988–92 (n = 518)</td>
<td>VDC+ IE</td>
<td>65%</td>
<td>Chemotherapy administered every 2 weeks is more effective than chemotherapy administered every 3 weeks, with no increase in toxicity</td>
</tr>
<tr>
<td>Localized and metastatic</td>
<td>VDC + IE standard (48 weeks)</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>US POG CCSG INT-154 1995–98 ES (n = 478)</td>
<td>VDC + IE intensified (30 weeks)</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>COG AEWS0031 2001–05 (n = 568)</td>
<td>VDC + IE (once every 3 weeks)</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>GPOH-UKCCSG EICESS92 Localized ES (n = 647)</td>
<td>VDC + IE (once every 2 weeks)</td>
<td>73%</td>
<td></td>
</tr>
<tr>
<td>HR Metastatic or > 100 mL</td>
<td>8 VAIA</td>
<td>73%</td>
<td>Cyclophosphamide seemed to have a similar effect on EFS and OS as ifosfamide in SR patients but not enough patients to conclude with certainty</td>
</tr>
<tr>
<td>SR Localized, < 100mL (P = NS; n = 150)</td>
<td>4 VAIA</td>
<td>74%</td>
<td>In HR patients, the addition of etoposide has a nonsignificant superiority</td>
</tr>
<tr>
<td>3-Year EFS</td>
<td>8 VACA</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>HR Metastatic or > 100 mL</td>
<td>14 VAIA</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>Localized, SR Good histologic response</td>
<td>6 VIDE + 1 VAI</td>
<td>78%</td>
<td>Cyclophosphamide may be able to replace ifosfamide in consolidation treatment of standard-risk ES</td>
</tr>
<tr>
<td>Or < 200 mL, RT alone (n = 856)</td>
<td>7 VAI</td>
<td>75%</td>
<td>Ongoing comparative evaluation of long-term renal and gonadal toxicity</td>
</tr>
<tr>
<td>Localized, SR Poor histologic response</td>
<td>6 VIDE + 1 VAI +</td>
<td></td>
<td>Completed, pending results</td>
</tr>
<tr>
<td>Or < 200 mL, RT alone</td>
<td>HD Busulfan + melphalan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic to lung only</td>
<td>7 VAI + lung RT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- The E99 R3 study of primary disseminated multifocal ES identified additional prognostic factors (age at diagnosis > 14 years, primary tumor volume > 200 mL, presence and number of bone lesions, additional pulmonary metastases, and bone marrow involvement), which permitted development of a more sensitive prognostic score.
- This score demonstrated significant differences in outcome for patients with primary metastatic disease by identifying one third of patients with a
<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients Treated With HDC</th>
<th>High-Risk Localized Disease (No. treated of overall No.)</th>
<th>Metastases at Diagnosis (No. treated of overall No.)</th>
<th>Recurrent or Progressive Disease (No. treated of overall No.)</th>
<th>Conclusion</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rizzoli Institute (Bologna, Italy); 1979 to 1997; retrospective study</td>
<td>35</td>
<td>35 of 195</td>
<td>35 of 195</td>
<td>Patients who received HDC compared with those who received conventional CT: 5-year EFS, 21% vs 0%; Poor risk factors of second relapse: recurrence > 2 years after first treatment</td>
<td>No multivariable analysis</td>
<td>Bacci et al8</td>
<td></td>
</tr>
<tr>
<td>UCL (London, United Kingdom); 1992 to 2004; retrospective study</td>
<td>33</td>
<td>33 of 33</td>
<td>33 of 33</td>
<td>Long-term survival can be attained in patients with recurrent or refractory ES; Greatest benefit observed in patients with lung-only metastases at recurrence</td>
<td>Various HDC regimens; potential toxicity of HDC</td>
<td>McTiernan et al9</td>
<td></td>
</tr>
<tr>
<td>Toronto (Ontario, Canada); 1990 to 2005; retrospective study</td>
<td>20</td>
<td>14 of 26</td>
<td>6 of 19</td>
<td>HDC may improve prognosis of children with very high-risk features (bone or bone marrow dissemination)</td>
<td>Small group of patients 17 received etoposide, cyclophosphamide, and melphalan; 1 received etoposide plus melphalan, and TBI; 2 received BuMel</td>
<td>Al-Faris et al10</td>
<td></td>
</tr>
<tr>
<td>CESS relapse registry; 2000 to 2011; retrospective study</td>
<td>73</td>
<td>73 of 239</td>
<td>73 of 239</td>
<td>In patients with CR or PR before HDC, multivariable regression analysis indicated absence of HDC (HR, 2.90) and early relapse (HR, 4.78) as independent risk factors</td>
<td>Various HDC: 15 received BuMel, 38 received treosulfan melphalan, 20 received other</td>
<td>Rasper et al11</td>
<td></td>
</tr>
<tr>
<td>Memorial Sloan Kettering Cancer Center; 1996 to 1998; CCG-7961; prospective study</td>
<td>23</td>
<td>23 of 32</td>
<td>23 of 32</td>
<td>In metastatic bone and/or bone marrow ES, no benefit of HDC</td>
<td>Homogenous treatment: induction chemotherapy, HDC (melphalan, etoposide, TBI)</td>
<td>Meyers et al12</td>
<td></td>
</tr>
<tr>
<td>Société Française des Cancers de l’Enfant; 1991 to 1999; prospective study</td>
<td>75</td>
<td>75 of 97</td>
<td>75 of 97</td>
<td>HDC may yield benefits for patients with lung-only or bone metastases</td>
<td>Homogenous treatment: semicontinuous cyclophosphamide, doxorubicin, IE; HDC (BuMel)</td>
<td>Oberlin et al13</td>
<td></td>
</tr>
<tr>
<td>Euro-Ewing 99; 1999 to 2005; prospective study</td>
<td>169</td>
<td>169 of 281</td>
<td>169 of 281</td>
<td>Patients with bone or bone marrow metastases may survive with intensive multimodal therapy</td>
<td>Homogenous induction chemotherapy</td>
<td>Ladenstein et al14</td>
<td></td>
</tr>
<tr>
<td>Madrid (Spain); 1995 to 2009; single-institution retrospective study</td>
<td>47</td>
<td>20</td>
<td>27 (volume > 200 mL, inoperable tumor, or PHR)</td>
<td>Good outcomes, particularly in patients with localized disease at diagnosis (78%); good performance status before transplantation; CR at time of transplantation</td>
<td>Among patients with metastatic disease, lung-only 56% vs 0% other</td>
<td>Diaz et al15</td>
<td></td>
</tr>
</tbody>
</table>

(continued on following page)
more favorable outcome (EFS, 40%). However, the majority still had poor (EFS, 25%) or dismal prognosis (EFS, 8%).

In localized ES, initial tumor size or volume is now commonly regarded as a strong prognostic factor, however measured and whatever the treatment. Poor prognosis is seen for large tumors defined either by a maximal diameter > 8 cm24 or by an initial tumor volume > 200 mL.25,26 However, for localized tumors resected after induction chemotherapy, histologic response is the strongest independent prognostic factor, overrides the impact of tumor size, regardless of the chemotherapy; EBMT, European Society for Blood and Marrow Transplantation; EFS, event-free survival; ES, Ewing sarcoma; HDC, high-dose chemotherapy; HR, hazard ratio; IE, ifosfamide and etoposide; PHR, poor histologic response; PR, partial response; TBI, total-body irradiation; UCL, University College London; VACA, vincristine, dactinomycin, cyclophosphamide, and doxorubicin.

Table 1. HDC in Ewing Sarcoma (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients Treated With HDC</th>
<th>Metastases at Diagnosis (No. treated of overall No.)</th>
<th>High-Risk Localized Disease (No. treated of overall No.)</th>
<th>Recurrent or Progressive Disease (No. treated of overall No.)</th>
<th>Conclusion</th>
<th>Comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian Sarcoma Group/Scandinavian</td>
<td>126</td>
<td>126 of 154 (PHR)</td>
<td>High-dose therapy added to VACA-IE regimen in PR patients is feasible and effective</td>
<td>Homogeneous induction chemotherapy</td>
<td>BuMel</td>
<td></td>
<td>Ferrari et al18</td>
</tr>
<tr>
<td>Sarcoma Group III protocol; 1999 to 2006; prospective study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian Sarcoma Group/Scandinavian</td>
<td>79</td>
<td>79 of 102 (lungs/pleura metastases and/or one single bone metastasis)</td>
<td>High-dose therapy after intensive approach and total-lung irradiation is feasible and effective</td>
<td>Incomplete radiologic remission after primary chemotherapy is unfavorable prognostic factor</td>
<td>Homogeneous induction</td>
<td>BuMel</td>
<td>Oberlin et al18</td>
</tr>
<tr>
<td>Sarcoma Group IV protocol; 1999 to 2006; prospective phase II study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBMT registry; 1980 to 2013; retrospective study</td>
<td>3,695</td>
<td>2,411 (primary multifocal and high-risk local disease)</td>
<td>719 Independent risk factors: age, response status, stem-cell source, BuMel HDC regimen</td>
<td>Homogeneous population; various lines of treatment; various HDC regimens; only patients who received HDC; multivariable analysis</td>
<td></td>
<td></td>
<td>Ladenstein et al18</td>
</tr>
</tbody>
</table>

Abbreviations: BuMel, busulfan and melphalan; CCG, Children’s Cancer Group; CESS, Cooperative Ewing’s Sarcoma Study; CR, complete response; CT, chemotherapy; EBMT, European Society for Blood and Marrow Transplantation; EFS, event-free survival; ES, Ewing sarcoma; HDC, high-dose chemotherapy; HR, hazard ratio; IE, ifosfamide and etoposide; PHR, poor histologic response; PR, partial response; TBI, total-body irradiation; UCL, University College London; VACA, vincristine, dactinomycin, cyclophosphamide, and doxorubicin.

However, prospective evaluation within the large EE99 trial and recent North American studies found no prognostic impact of fusion transcript type.37,38 There is a group of Ewing-like tumors that are treated as ES even though they have fusions that join non-ETS genes (NFAT2, SMARCA5, PATZ1, and SP3) with (EWSR1) or without involvement of TET family members (CIC-DUX4, BCOR-CCNB3).31,42 These entities likely harbor different tumor pathogenesis and might therefore have different clinical behavior or require alternative treatment strategies. There are also recurrent copy number variations of possible prognostic relevance, including gains of chromosomes 1q, 8q, and 20 and loss of chromosome 16q.25 Whether comparative genomic hybridization profiling of the tumor might be used for classification, such as in neuroblastoma,39 requires further study. Compelling data from retrospective studies implicate alterations of TP53 and CDKN2A as negative prognostic biomarkers in ES, but their prognostic impact was not confirmed in a COG prospective study.40 In contrast, the poor prognostic value of concurrent STAT2 and TP53 mutations has been reported.40

The prognostic value of molecularly detectable minimal disseminated disease (MRD) remains controversial.44-46 Disseminated tumor cells in bone marrow and blood are detected at diagnosis by real-time polymerase chain reaction in approximately 20% of patients with localized ES. These patients have a clinical course similar to those with overtly metastatic ES characterized by early relapse and poor prognosis.47 MRD detected during long-term follow-up in bone marrow and/or blood samples might identify ES recurrence in patients before its clinical manifestation.48-50 Other ways to evaluate MRD in ES, such as flow cytometry and fluorescent in situ hybridization,49 and next-generation sequencing–based detection of circulating tumor
DNA might be more easily standardized and reproduced, but their sensitivity in comparison to polymerase chain reaction remains to be defined. Prospective evaluation in large clinical trials is required to determine the most sensitive method for detecting MRD, the prognostic value of MRD, and the possible benefit of therapy modification based on MRD.

Last but not least, ES prognosis is critically determined by adequacy of local control of the primary tumor and efficacy of systemic chemotherapy to eradicate metastatic disease (Fig 2).

Local Treatment: Surgery and/or Radiotherapy

The best approach for local control has evolved with time, advances in technology, and accumulating knowledge of outcomes and late effects from observational studies. A multitude of factors influence choice of local treatment (eg, patient age, site, size and local extension of tumor); however, randomized studies of local therapy approaches have been limited to two small trials evaluating radiotherapy modalities. A future randomized local control study does not seem feasible.

The radiosensitivity of ES has been recognized since the description of this tumor by James Ewing. However, radiotherapy as the single modality results in a high incidence of local recurrence (up to 30% to 35%), especially for large tumors, and an increased risk of late effects (eg, growth impairment, second malignant tumors). Surgery was gradually introduced as local treatment, and its indication was extended from expendable bones to bones requiring replacement. The development of surgical bone replacement techniques, including endoprostheses, allografts, and vascularized autografts, has helped. However, late effects are also observed with surgery (eg, endoprosthetic infection, bone healing difficulties, fractures). Endoprosthetic replacement in growing children is an added challenge requiring specific expertise.

Currently, tumor resection is performed whenever a marginal or wide resection seems possible, because surgical resection seems to be superior to definitive radiotherapy for local control. Intraläsional resection or debulking procedures followed by radiotherapy do not offer superior local control or survival compared with definitive radiotherapy and should be avoided. Amputations are rarely indicated (< 10%) in patients for whom radiation therapy would likely result in poor functional results because of tumor site or age. Rotationplasty can be used in children of a suitable age as an alternative to amputation.

Today, definitive radiotherapy is only advised for inoperable lesions, with a recommended dose of 54 to 55 Gy to the tumor (depending on site) with a 2-cm security margin that should also include scars from surgery or biopsy. Large tumors may require higher radiation doses. However, caution is advised with radiotherapy timing and dose after busulfan-containing regimens because of the radiosensitizing effect of this agent. Patients with ES have also benefitted from contemporary advances in radiation technology that spare normal tissues (eg, intensity modulated, stereotactic conditions, proton radiation therapy). Fractionation does not seem to affect local control. The quality of radiotherapy is essential for local control and can be improved by central treatment plan review.

Debate continues about the indications for postoperative radiation therapy, because current knowledge is based on conflicting results from observational studies. Postoperative radiation therapy is universally recommended in cases of incomplete surgical resection, however, in Europe, patients with completely resected tumors with poor histologic response also receive postoperative radiation therapy. Because postoperative radiation therapy is tailored to the individual patient (young age) and tumor characteristics (site, surrounding radiosensitive structures), heterogeneity is inevitable in postoperative radiation therapy decision making. Taking into account competing events, an analysis of the E999 trial showed that postoperative radiation therapy improved local control, even after a good response to induction chemotherapy. Although additional studies are required to assess the balance between postoperative radiation therapy benefits and risks, postoperative radiation therapy indications have been broadened in the Euro-Ewing 2012 trial.

Preoperative radiation therapy has been introduced as a new local therapy modality in patients with expected close resection margins and when additional tumor reduction may facilitate function-preserving surgery. Interpretation of histologic response is then not reliable, because its impact on survival has not been studied after preoperative radiotherapy.

Systemic Treatment: Which Chemotherapy and Which Intensity?

Historically, the vast majority of patients treated with surgery or radiotherapy alone died as a result of metastases. In the 1970s,
cytotoxic active agents against ES included vincristine, daunomycin, and cyclophosphamide (VAC), which were combined with doxorubicin, resulting in increased survival (IESS-I [Intergroup Ewing’s Sarcoma Study I]). Initially, chemotherapy was used in an adjuvant setting to control metastasis and then in a neoadjuvant setting to enhance local control (Fig 2). The importance of doxorubicin dose-intensity was demonstrated in IESS-2 and later highlighted in a meta-analysis.62

In the 1980s, the combination of ifosfamide and etoposide (IE) was found to be active in second-line ES protocols.63 The randomized INT-0091 trial demonstrated the benefit of adding the IE combination to vincristine, doxorubicin, and cyclophosphamide (VDC) in localized ES, but there was no benefit observed in patients with metastatic disease.7 Other investigations that replaced cyclophosphamide with ifosfamide in single-arm studies produced conflicting results.29,52 National groups in Europe implemented randomized trials to answer these questions. The randomized EICESS-92 trial (by Gesellschaft für Pädiatrische Onkologie und Hämatologie [GPOH] and Children’s Cancer and Leukaemia Group [CCLG]) addressed ifosfamide and cyclophosphamide equivalence in localized ES. Survival was similar in both arms, but the trial was only powered to show VAC versus vincristine, daunomycin, ifosfamide, and doxorubicin (VAIA) differences of ≥ 15%.64 Designed as a successor study, the large EE99 R1 trial (by GPOH, CCLG, Société Française de Lutte Contre les Cancers et les Leucémies de l’Enfant et de l’Adolescent [SFCE], and European Organisation for Research and Treatment of Cancer [EORTC]) compared cyclophosphamide with ifosfamide in combination with vincristine and daunomycin (VAC v VAI) for standard-risk ES (histologic response < 10% in resected tumors or initial tumor volume < 200 mL for unresected tumors) in maintenance phase.65 The conclusion of this large trial was that cyclophosphamide might be able to replace ifosfamide in consolidation treatment of standard-risk ES. The comparative evaluation of long-term renal and gonadal toxicities is ongoing and will be crucial in guiding future treatment decisions. Alteration of both agents may be a means to reduce cumulative doses of each and their late effects.

The use of granulocyte colony-stimulating factor (filgrastim) has allowed dose-intensification of chemotherapy, either by increasing the doses of cyclophosphamide and ifosfamide or by shortening the interval between treatments.66 A COG randomized trial compared a dose-intensified chemotherapy regimen of cyclophosphamide and ifosfamide in VDC-IE with standard alkylator doses of the same regimen. No difference in outcome was observed, perhaps because of difficulties in maintaining dose-intensity of alkylating agents during treatment.4 The next COG trial for localized ES randomly assigned patients to receive VDC-IE chemotherapy administered every 2 weeks (interval compression) versus every 3 weeks (standard). Compared with those assigned to the 3-week treatment interval, patients assigned to the 2-week treatment interval had superior 5-year EFS (73% v 65%; P = .048). There was also no increase in toxicity observed with the compressed schedule.5

High-dose chemotherapy followed by stem-cell rescue for ES is based on dose-response and dose-intensity relationships. Most of the single-agent high-dose chemotherapy studies used melphalan, which demonstrated transient activity in measurable tumors but did not improve long-term outcome.70 Agents that have been used in combination high-dose chemotherapy with or without total-body irradiation include carmustine, carboplatin, cyclophosphamide, etoposide, melphalan, thiopeta, procarbazine, busulfan, and treosulfan. Several single-arm studies have explored combination high-dose chemotherapy efficacy using historical controls in poor-prognosis situations, such as recurrent or newly diagnosed metastatic tumors (Table 1). High-dose chemotherapy with busulfan and melphalan (BuMel) was initially evaluated in patients with metastatic disease. In a single-arm French study, 5-year EFS was 52% for patients with lung-only metastases and 36% for those with bone metastases.13 At the same time, other groups achieved similar results using conventional chemotherapy and whole-lung irradiation for patients with metastatic disease limited to the lungs.74 Resection of pulmonary metastases alone was abandoned because of lack of efficacy.72,73 The EE99 study aimed to evaluate the best consolidation treatment after initial chemotherapy with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE)74 by randomly assigning participants to whole-lung irradiation with conventional VAI chemotherapy versus BuMel high-dose chemotherapy without lung irradiation. Results of this trial are pending.

In the same protocol, patients with extrapulmonary metastases were treated in a single-arm study with BuMel high-dose chemotherapy after seven courses of conventional chemotherapy. OS at 3 years was 34% but varied according to the risk factors mentioned in this article.14 In contrast, the Ewing 2008 trial is using a randomized study design to evaluate the benefit of adding one course of high-dose chemotherapy with treosulfan plus melphalan to conventional VAC chemotherapy in patients with extrapulmonary metastatic disease. The Italian (ISG) and Scandinavian Sarcoma Groups designed a joint nonrandomized study to improve the prognosis of patients with ES tumors with lung-only metastases and/or a single bone metastasis. Consolidation treatment included BuMel and whole-lung irradiation. The 5-year EFS was 43%.17

Other trials have questioned the value of high-dose chemotherapy. For example, a Children’s Cancer Group study treated newly diagnosed patients with extrapulmonary metastases with VDC-IE chemotherapy followed by high-dose chemotherapy with melphalan and etoposide plus total-body irradiation. The 23% 2-year EFS was identical to that achieved with conventional chemotherapy alone.12 On the basis of the 30-year experience with high-dose chemotherapy, the European Society for Blood and Bone Marrow Transplantation concluded that this approach improved results in high-risk patients and favored busulfan-containing high-dose chemotherapy.18 Two cooperative groups used BuMel as consolidation treatment for high-risk localized ES defined by poor histologic response to induction chemotherapy,16,30 with improved survival as compared with historical controls and survival similar to that of standard-risk patients.54 These studies, which showed a potential benefit of this strategy, were the basis of EE99, the results of which are still pending.

The COG investigated the feasibility of a metronomic treatment using vinblastine plus celecoxib combined with VDC-IE (AEWS02P1 [American Ewing Sarcoma Study 02P]) in metastatic ES. Although feasible according to protocol definitions, excess toxicity in irradiated tissues was noted and has limited the use of this regimen. In addition, the 24-month EFS was only 35% (71% for lung-only v 26% for extrapulmonary metastases).75

Current Phase III Studies

There are several randomized trials ongoing for localized ES (Fig 3), with age inclusion criteria chosen according to disease epidemiology (age < 35 to 50 years). VIDE induction chemotherapy is now considered the standard chemotherapy for ES in Europe, whereas
Collaboration in Ewing Sarcoma

<table>
<thead>
<tr>
<th>COG AEWS1031</th>
<th>Localized</th>
<th>VDC/IE</th>
<th>VDC/IE + cyclophosphamide/topotecan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewing 2008</td>
<td>6 VIDE</td>
<td>Standard risk</td>
<td>Good histologic response or < 200 mL, RT alone</td>
</tr>
<tr>
<td>Lung-only metastases</td>
<td>6 VIDE + 1 VAI</td>
<td>High risk</td>
<td>Poor histologic response or < 200 mL, RT alone</td>
</tr>
<tr>
<td>Other metastases</td>
<td>6 VIDE</td>
<td>7 VAI + lung RT</td>
<td>8 VAC/VAI + zoledronate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Busulfan/melphalan</td>
<td>8 VAC/VAI</td>
</tr>
<tr>
<td>Euro-Ewing 2012</td>
<td>6 VIDE</td>
<td>8 VAC</td>
<td>8 VAC + zoledronate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 VC + 4 IE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 VDC + 4 IE + zoledronate</td>
</tr>
<tr>
<td>Italy ISG/AIEOP EW-1</td>
<td>Arm A: Conventional doses</td>
<td>Good response: conventional maintenance (37 weeks)</td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>Arm B: Dose-intensification and shorter length of treatment</td>
<td>Good response: intensive maintenance (25 weeks)</td>
<td></td>
</tr>
</tbody>
</table>

REFRACTORY AND RECURRENT DISEASE

The prognosis of refractory or recurrent ES remains dismal. Even after limited localized relapse, the long-term survival is 22% to 24% and is even lower for patients with distant relapse. To date, no standard treatment has been defined in such a setting. Several combinations of agents have shown promising responses in retrospective or phase II studies, such as topotecan plus cyclophosphamide, temozolomide plus irinotecan, gemcitabine plus docetaxel, and high-dose ifosfamide. The first Euro-Ewing Consortium (EEC) study for recurrent ES (REECUR) will feature a randomized phase II/III trial with multi-arm multi-stage design comparing these four regimens to identify the optimum one based on the balance between efficacy and toxicity. However, initial response to chemotherapy does not translate into prolonged survival, especially for early recurrences, underscoring the need for novel consolidation strategies. Randomized controlled trials are needed to establish the role of high-dose chemotherapy in tumors that respond to second-line therapy, because conflicting results have been reported in retrospective and single-arm studies. There is also an urgent need for new strategies combining targeted therapies with chemotherapy regimens of established efficacy, because targeted therapies alone are unlikely to cure patients with ES recurrence.

NEW TARGETS

Despite the EWS-FLI1 fusion protein driving ES oncogenesis, it has proven to be a poor target for drug development (transcription factor of nuclear localization). Presently, the most promising targeted therapies are those acting on the microenvironment (Fig 4).

Several drugs have been identified using EWS-FLI1 signature-based approaches that mimic the effects of EWS-FLI1 knockdown. Agents directly targeting the EWS-FLI1 interaction with partner proteins (RNA helicase A) in the transcriptional complexes are in the preclinical optimization phase (eg, small-molecule YK-4-279 and peptide ESAP1). Other identified agents are chemotherapy drugs with established clinical efficacy (eg, doxorubicin and etoposide) and agents under evaluation, such as the broad-spectrum protein kinase inhibitor midostaurin (phase I trial in leukemia; ClinicalTrials.gov identifier NCT01174888) and the antineoplastic antibiotic-inhibiting RNA synthesis mithramycin (ongoing phase I trial in EW; ClinicalTrials.gov identifier NCT01610570). However, this approach has been criticized, because cytarabine identified by a similar preclinical screen failed to show efficacy in an ES phase II trial. EWS-FLI1–specific expression signatures have also been the basis for integrated genomic approaches to identify key downstream pathways for potential therapeutic drugs inhibiting the deregulated EWS-FLI1 effectors.

The insulin-like growth factor-1 receptor (IGF1R) –targeting strategy, an initially promising therapy based on evidence of IGF1

Fig 3. Randomized trials ongoing for localized Ewing sarcoma. AIEOP, Associazione Italiana Ematologia Oncologia Pediatrica; COG, Children’s Oncology Group; IE, ifosfamide plus etoposide; ISG, Italian Sarcoma Group; RT, radiotherapy; VAC, vincristine, dactinomycin, and cyclophosphamide; VDC, vincristine, doxorubicin, and ifosfamide; VIDE, vincristine plus cyclophosphamide; VDC, vincristine, doxorubicin, and ifosfamide; VC, vincristine, ifosfamide, doxorubicin, and etoposide.
signaling in ES, has not resulted in significant new therapeutic approaches. The clinical application of IGF1R-directed antibodies or small-molecule inhibitors produced dramatic but transient responses in a few patients (10%) with refractory disease, albeit prolonged disease control in a tiny minority of patients. Because of modest success against a variety of cancers in single-agent studies, pharmaceutical companies dropped these agents, although a randomized trial with and without an IGFR1 antibody, in combination with VDC-IE chemotherapy, for metastatic ES is planned by COG. Alternatively, up-regulation of IGFR1 or mammalian target of rapamycin suggests a potential mechanism of resistance, calling for cotargeted approaches. However, the pathophysiology of the dramatic response to IGFR1 inhibition and predictive biomarkers in the small population of responders remains unknown.

Poly (ADP-ribose) polymerase 1 (PARP1) is a key enzyme involved in single-strand repair of DNA and a cofactor for EWS-FLI1 DNA binding. In vitro and in vivo ES models are highly sensitive to the PARP1 inhibitor olaparib alone and in combination with temozolomide. Drug screening of several hundred cancer cell lines identified marked and selective susceptibility of ES cell lines to olaparib. PARP1 inhibitors alone or in combination with temozolomide have already entered ES clinical trials enrolling adults and children. DNA repair potential biomarkers currently exist (e.g., H2AX, poly [ADP-ribose]). Assays are under development to analyze PARP1 inhibitor activity in peripheral-blood cells as a potential surrogate for tumor biopsies.

EWS-FL11 directly regulates epigenetic mechanisms of gene repression, which involves the direct EWS-FL11 target gene PRKCB. Loss induced apoptosis in vitro and prevented tumor growth in vivo in ES models. Enzastaurin, a protein kinase C inhibitor, has been tested in lymphoma and carcinoma but not as yet in sarcoma.

Some tumor microenvironment–targeted therapies developed for other tumor types are currently being tested on ES. Bevacizumab is an anti–vascular endothelial growth factor (VEGF) immunoglobulin G1 monoclonal antibody which inhibits VEGF/VEGF receptor-1 and VEGFR receptor-2 interactions and VEGF-dependent angiogenesis. A randomized phase II trial of bevacizumab combined with vincristine, topotecan, and cyclophosphamide in first recurrent ES showed good tolerance (COG AEWS0521; ClinicalTrials.gov identifier NCT00516295). Antiangiogenic multikinase small-molecule inhibitors are also being tested (e.g., regorafenib; ClinicalTrials.gov identifier NCT02048371).

Bone tumors are characterized by a combination of tumor growth and osteolysis, marked by the activity of RANK and its ligand (RANKL). RANKL facilitates osteoclastogenesis, bone resorption, and growth factor secretion, leading to bone destruction, tumor growth, and intraosseous migration of RANK-positive cells. Zoledronic acid, a potent inhibitor of bone resorption, inhibits RANK expression and osteoclast progenitor migration during osteoclastogenesis and increases osteoprotegerin expression. In vivo ES models, zoledronic acid is only active against the bone tumor. An effect on extraosseous tumor components is obtained when zoledronic acid is combined with ifosfamide. Two randomized trials are evaluating the added benefit of zoledronic acid in combination with first-line chemotherapy for localized ES maintenance treatment (Ewing 2008 and Euro-Ewing 2012; H, histone; IGF1R, insulin-like growth factor receptor-1; mAb, monoclonal antibody; mTOR, mammalian target of rapamycin; PARP, poly [ADP-ribose] polymerase; PKC, protein kinase C; RANKL, RANK ligand; RHA, RNA helicase; VEGFR, vascular endothelial growth factor receptor).

Some new potential targets in Ewing sarcoma. CAR, chimeric receptor gene-modified T cell; EE 2012, Euro-Ewing 2012; H, histone; IGF1R, insulin-like growth factor receptor-1; mAb, monoclonal antibody; mTOR, mammalian target of rapamycin; PARP, poly [ADP-ribose] polymerase; PKC, protein kinase C; RANKL, RANK ligand; RHA, RNA helicase; VEGFR, vascular endothelial growth factor receptor.
Collaboration in Ewing Sarcoma

T cells further had activity against ES xenografts. A phase I study to determine the feasibility of producing anti-GD2 chimeric antigen receptor cells and the safety in children and adults with GD2-expressing solid tumors other than neuroblastoma is ongoing (ClinicalTrials.gov identifier NCT02107963). Another interesting immune strategy in ES is anti-CD99 monoclonal antibodies, which showed additive growth inhibitory effect with doxorubicin in preclinical ES in vivo models.

The optimization of ES multimodality therapeutic strategies has resulted from the efforts of national and international groups in Europe and North America and from cooperation among multidisciplinary investigators. Successive first-line trials have addressed the efficacy of various cyclic combinations of drugs and identified prognostic factors used to tailor therapies, although the place of high-dose chemotherapy is still debated. However, outcomes for patients with metastatic and recurrent ES remain poor, because most are incurable with current chemotherapy regimens and strategies. A better understanding of ES biology is critical to understand oncogenesis and metastatic processes, unveil mechanisms of resistance, and identify novel therapies. With increasing knowledge, prioritization of marker, target, and drug selection for ES clinical trials will be the next international collaborative challenge. The first European Network for Cancer Research in Children and Adolescents (ENCCA)–supported European Interdisciplinary ES Research Summit held in Vienna, Austria, in 2011 assembled 30 European and five North American expert scientists to address this goal.

The development of biomarkers predictive of therapeutic response is crucial and must accompany drug development from the start. Because successive biopsies might be problematic, biomarker assessment in peripheral blood is appealing, especially in children. Successful validation of predictive biomarkers in concert with clinical assessment of drug efficacy will ensure that the potential benefits of these agents are investigated as expeditiously as possible. Traditional therapeutic approaches including dose-dense chemotherapy and multidisciplinary approaches have led to impressive cure rates of approximately 65% to 70% for patients with localized disease. However, new therapeutic approaches, such as targeted therapy, are required to improve outcomes for patients with metastatic tumors and relapsing or refractory disease and potentially may further improve outcomes for patients with localized disease with reduced toxicity profiles.

Elucidation of ES biology offers promise for identifying novel potential therapeutic targets. The challenge for the future will be their integration into phase III protocols while demonstrating their benefit in improving patient outcomes. Such integration will necessitate new study designs to minimize the required number of patients and the length of study accrual. Selection of patients, matching patient-specific oncogenic pathways with the mode of action of specific drugs, could be (among others) one of the new trial designs. Increased collaboration among clinical cooperative groups and among industry and cooperative groups is essential to further improve ES prognosis.

REFERENCES

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at www.jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Nathalie Gaspar, Perrine Marc-Béard
Collection and assembly of data: Nathalie Gaspar, Robert Grimer, Michael Paulussen, Jean Michon, Lars Hjorth
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors

www.jco.org

Downloaded from jco.ascopubs.org by Alessandra Longhi on October 21, 2015 from 193.43.97.18

© 2015 by American Society of Clinical Oncology

Alterations of molecular detection in the...
study of the Euro-EWING Group. J Clin Oncol 31: 636s, 2013 (suppl 15s; abstr 10518)

70. Ladenstein R, Hartmann O, Pinkerton CR: The role of megatherapy with autologous bone marrow rescue in solid tumours of childhood. Ann Oncol 4:45-58, 1993 (suppl 1)

Affiliations

Nathalie Gaspar, Marie-Cecile Le Deley, and Odile Oberlin, Institut Gustave Roussy, Villejuif; Nathalie Gaspar, Marie-Cecile Le Deley, Line Claude, Olivier Delattre, Jean Michon, Perrine Marec-Bérand, and Odile Oberlin, Société Française de Lutte Contre les Cancers et les Leucémies de l’Enfant et de l’Adolescent; Marie-Cecile Le Deley, Paris-Sud University, Le Kremlin-Bicêtre; Line Claude and Perrine Marec-Bérand, Centre Léon-Bérard, Lyon; Olivier Delattre and Jean Michon, Institut Curie, Paris, France; Douglas S. Hawkins, Seattle Children’s Hospital, Seattle, WA; Douglas S. Hawkins, Mark L. Bernstein, and Richard B. Womer, Children’s Oncology Group; Uta Dirksen and Heribert Juergens, University Hospital Münster, Münster; Uta Dirksen, Michael Paulusen, and Heribert Juergens, Gesellschaft für Pädiatrische Onkologie und Hämatologie; Michael Paulusen, Children’s and Adolescents’ Hospital, Witten/Herdecke University, Datteln, Germany; Ian J. Lewis, Alder Hey Children’s National Health Service (NHS) Foundation Trust, Liverpool; Ian J. Lewis, Robert Grimer, Bernadette Brennan, and Alan W. Craft, Children’s Cancer and Leukaemia Group; Robert Grimer, Royal Orthopaedic Hospital, Birmingham; Jeremy Whelan, University College London Hospital NHS Foundation Trust; Ian Judson, Royal Marsden Hospital, London; Bernadette Brennan, Royal Manchester Children’s Hospital, Manchester; Alan W. Craft, Royal Victoria Infirmary, Newcastle, United Kingdom; Stefano Ferrari and Piero Picci, Rizzoli Institute, Bologna; Stefano Ferrari, Piero Picci, Roberto Lukhsch, Italian Sarcoma Group; Roberto Lukhsch, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale dei Tumori, Milan, Italy; Heinrich Kovar and Ruth Ladenstein, Children’s Cancer Institute, St Anna Kinderkrebsforschung, Wien; Heinrich Kovar and Ruth Ladenstein, Arbeitsgemeinschaft Ambulatär Tätiger Pädiatrischer Onkologen und Hämatologen, Vienna, Austria; Jeremy Whelan and Ian Judson, European Organisation for Research and Treatment of Cancer, Brussels, Belgium; Kirsten Sundby Hall, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Kirsten Sundby Hall and Lars Hjorth, Scandinavian Sarcoma Group; Lars Hjorth, Skåne University Hospital, Lund University, Lund, Sweden; Hendrik van den Berg, Emma Children’s Hospital Academic Medical Center, Amsterdam; Hendrik van den Berg, Dutch Childhood Oncology Group, the Hague, the Netherlands; Mark L. Bernstein, Dalhouse University, Halifax, Nova Scotia, Canada; and Richard B. Womer, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA.
AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Ewing Sarcoma: Current Management and Future Approaches Through Collaboration

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Nathalie Gaspar
No relationship to disclose

Douglas S. Hawkins
No relationship to disclose

Uta Dirksen
No relationship to disclose

Ian J. Lewis
No relationship to disclose

Stefano Ferrari
Speakers' Bureau: Takeda Pharmaceuticals
Research Funding: PharmaMar (Inst), Amgen (Inst), MolMed
Travel, Accommodations, Expenses: Takeda Pharmaceuticals

Marie-Cecile Le Deley
No relationship to disclose

Heinrich Kovar
No relationship to disclose

Robert Grimer
No relationship to disclose

Jeremy Whelan
No relationship to disclose

Line Claude
No relationship to disclose

Olivier Delattre
No relationship to disclose

Michael Paulussen
No relationship to disclose

Piero Picci
No relationship to disclose

Kirsten Sundby Hall
No relationship to disclose

Hendrik van den Berg
No relationship to disclose

Ruth Ladenstein
No relationship to disclose

Jean Michon
No relationship to disclose

Lars Hjorth
Stock or Other Ownership: Bioinvent
Honoraria: Takeda Pharmaceuticals
Travel, Accommodations, Expenses: Takeda Pharmaceuticals

Ian Judson
No relationship to disclose

Roberto Luksch
No relationship to disclose

Mark L. Bernstein
No relationship to disclose

Perrine Marec-Bérard
No relationship to disclose

Bernadette Brennan
No relationship to disclose

Alan W. Craft
No relationship to disclose

Richard B. Womer
No relationship to disclose

Heribert Juergens
No relationship to disclose

Odile Oberlin
No relationship to disclose
Acknowledgment

We thank all the patients and their families for their participation in biologic studies and clinical trials, all our colleagues involved in care and research improvement (pediatric oncologists, medical oncologists, radiation oncologists, surgeons, radiologists, pathologists, statisticians, and researchers), and all the national groups and international organizations favoring collaboration: Children's Cancer and Leukemia Group United Kingdom, Children's Cancer Group, Dutch Childhood Oncology Group, German Pediatric Oncology Group, Austrian Pediatric Oncology Group, Italian Sarcoma Group, Scandinavian Sarcoma Group, Société Française des Cancers de l'Enfant, Cooperative Ewing Sarcoma Studies, European Intergroup Cooperative Ewing Sarcoma Study, European Ewing Tumor Working Initiative of National Groups, Euro-Ewing 99, Euro-Ewing Consortium, European Organisation for Research and Treatment of Cancer, Intergroup Ewing Sarcoma Study, National Cancer Research Institute Sarcoma Group United Kingdom, and European Society for Blood and Marrow Transplantation Solid Tumor and Pediatric Working Parties. We also thank Carole Lecinse for manuscript editing.